

SYLLABUS OF THE ACADEMIC DISCIPLINE

Fuzzy logic in intellectual systems

Educational program component – mandatory (4.0 credits)

Educational and Professional	Information technology and project management
Program	
Specialty	122 – Computer Science
Field of knowledge	12 – Information technology
Level of higher education	first (bachelor's)
Language of teaching	Ukrainian
Teacher profile	Pasichnyk Halyna Saveliivna
	Head of the Department of Mathematical Modeling,
	Candidate of Physical and Mathematical Sciences,
	Associate Professor
	https://mathmod.chnu.edu.ua/pro-
	nas/spivrobitnyky/pasichnyk-halyna-saveliivna/
Contact phone number	+38037-258-48-25
E-mail:	h.pasichnyk@chnu.edu.ua
Course page in Moodle	https://moodle.chnu.edu.ua/course/view.php?id=6786
Consultations	Wednesday, 14:20 – 16:00

ANNOTATION OF THE ACADEMIC DISCIPLINE

The purpose of studying the discipline is

- to form mathematical knowledge in the field of fuzzy set theory and fuzzy logic;
- to form skills in performing mathematical operations on fuzzy sets and fuzzy relations;
 - to use fuzzy statements and linguistic variables to model complex systems.

The task of studying the academic discipline is

- to study the apparatus of the theory of fuzzy sets and fuzzy logic;
- •to acquire practical skills in modeling fuzzy quantities, fuzzy statements, linguistic variables by students;
 - to form skills in working with fuzzy sets, fuzzy relations, linguistic variables;
 - to obtain basic knowledge in fuzzy modeling of various systems.

This course studies the theory of fuzzy sets, mathematical operations on fuzzy sets and fuzzy relations, and the use of fuzzy logic for modeling complex systems. Models and algorithms for fuzzy logical inference are studied. The issue of constructing and using fuzzy neural networks is considered.

EDUCATIONAL CONTENT OF THE EDUCATIONAL DISCIPLINE

MODULE 1. Fuzzy Sets	
Topic 1	Classical Sets and Fuzzy Sets
Topic 2	Fuzzy Relations

Topic 3	Properties of Membership Functions, Fuzzification, and
	Defuzzification
Topic 4	Linguistic Hedges
MODULE 2. Logic and Fuzzy Systems	
Topic 5	Other Forms of the Implication Operation
Topic 6	Fuzzy (Rule-Based) Systems
Topic 7	Development of Membership Functions. Neural Networks.
	Genetic Algorithms
Topic 8	Automated Methods for Fuzzy Systems
Topic 9	Fuzzy Control Systems

FORMS, METHODS AND EDUCATIONAL TECHNOLOGIES OF TEACHING

Learning and teaching methods: lectures, laboratory classes, e-learning using the Moodle system, testing, completing INDS tasks.

FORMS AND METHODS OF CONTROL AND EVALUATION

Types and forms of control

- 1. Current (oral questioning, solving problems)
- 2. Modular (tests, laboratory work).

Assessment tools: - tests; team projects; analytical reports on the performance of laboratory work, individual tasks and independent work.

Final control - exam.

CRITERIA FOR ASSESSING LEARNING RESULTS

The system for assessing the level of educational achievements is based on the principles of ECTS and is cumulative. During the semester, students complete two tests and 4 laboratory works. Each test is evaluated with a maximum of 5 points, and laboratory works are evaluated with a maximum of 15 points. The final control in the discipline is an oral exam (40 points).

POLICY ON ACADEMIC INTEGRITY

Adherence to the policy on academic integrity by participants in the educational process when studying an academic discipline is regulated by the following documents:

- ✓ «Code of Ethics of Yuriy Fedkovych Chernivtsi National University» https://www.chnu.edu.ua/media/jxdbs0zb/etychnyi-kodeks-chernivetskoho-natsionalnoho-universytetu.pdf
- ✓ «Regulations on the detection and prevention of academic plagiarism at Yuriy Fedkovych Chernivtsi National University» https://www.chnu.edu.ua/media/n5nbzwgb/polozhennia-chnu-pro-plahiat-2023

plusdodatky-31102023.pdf

INFORMATION RESOURCES

- 1. Borisov, A. N. A theory of possibility for decision-making / A. N. Borisov, O. A. Krumberg // Fuzzy Sets and Systems. -1983. Vol. 9, N₂ 1. P. 34–38.
 - 2. Altrock, C. Fuzzy logic. Bd. 2: Technologie. Munchen, BRD:
 - R. Oldenburg Verlag GmbH, 1994. 375 p.
- 3. Bien, Z. An automatic start-up and shutdown control of drumtype boiler using fuzzy logic / Z. Bien, D. H. Hwang, J. H. Lee, H. K. Ryu // Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks. II Zuka. Japan. 1992. P. 465–468.
- 4. Hishida, N. Development of the operator support system applying fuzzy algorithms for glass tube molding equipment // Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks. Iizuka, Japan, 1992.
 - P. 1097-1100.
- 5. Tobi, T. A practical application of fuzzy control for an airconditioning system / T. Tobi, T. Hanafusa // International Journal of Approximate Reasoning. $-1991.-N_{\odot}5.-P.331-348$.
- 6. Fujiyoshi, M. A fuzzy automatic-combustion-control-system of refuse incineration plant / M. Fujiyoshi, T. A. Shiraki // Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks. Iizuka, Japan, 1992.
 - P. 469-472.
- 7. Zadeh, L. A. Decision-making in a fuzzy environment / L. A. Zadeh, R. E. Bellman // Management. Sci. 1970. Vol. 17. P. 141–164.
- 8. T. J. Ross Fuzzy Logic with Engineering Applications, Second Edition John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England –2004.
- 9. Cordon Oscar, Herrera Francisco, Hoffmann Frank, Magdalena Luis Genetic Fuzzy systems. Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, 2001. Singapore, New Jersey, London, Hong Kong. 462